81 research outputs found

    Wideband precision stabilization of the -18.6kV retarding voltage for the KATRIN spectrometer

    Get PDF
    The Karlsruhe Tritium Neutrino Experiment (KATRIN) measures the effective electron anti-neutrino mass with an unprecedented design sensitivity of 0.2 eV (90 % C.L.). In this experiment, the energy spectrum of beta electrons near the tritium decay endpoint is analyzed with a highly accurate spectrometer. To reach the KATRIN sensitivity target, the retarding voltage of this spectrometer must be stable to the ppm level and well known on various time scales (μs\mu s up to months), for values around -18.6 kV. A custom-designed high-voltage regulation system mitigates the impact of interference sources in the absence of a closed electric shield around the large spectrometer vessel. In this article, we describe the regulation system and its integration into the KATRIN setup. Independent monitoring methods demonstrate a stability within 2 ppm, exceeding KATRIN's specifications.Comment: 28 pages, 17 figures, minor improvement

    Technical design and commissioning of the KATRIN large-volume air coil system

    Get PDF
    The KATRIN experiment is a next-generation direct neutrino mass experiment with a sensitivity of 0.2 eV (90% C.L.) to the effective mass of the electron neutrino. It measures the tritium β\beta-decay spectrum close to its endpoint with a spectrometer based on the MAC-E filter technique. The β\beta-decay electrons are guided by a magnetic field that operates in the mT range in the central spectrometer volume; it is fine-tuned by a large-volume air coil system surrounding the spectrometer vessel. The purpose of the system is to provide optimal transmission properties for signal electrons and to achieve efficient magnetic shielding against background. In this paper we describe the technical design of the air coil system, including its mechanical and electrical properties. We outline the importance of its versatile operation modes in background investigation and suppression techniques. We compare magnetic field measurements in the inner spectrometer volume during system commissioning with corresponding simulations, which allows to verify the system's functionality in fine-tuning the magnetic field configuration. This is of major importance for a successful neutrino mass measurement at KATRIN.Comment: 32 pages, 16 figure

    Forward Beam Monitor for the KATRIN experiment

    Get PDF
    The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to measure the neutrino mass with a sensitivity of 0.2 eV (90 % CL). This will be achieved by a precision measurement of the endpoint region of the β-electron spectrum of tritium decay. The β-electrons are produced in the Windowless Gaseous Tritium Source (WGTS) and guided magnetically through the beamline. In order to accurately extract the neutrino mass the source activity is required to be stable and known to a high precision. The WGTS therefore undergoes constant extensive monitoring from several measurement systems. The Forward Beam Monitor (FBM) is one such monitoring system. The FBM system comprises a complex mechanical setup capable of inserting a detector board into the KATRIN beamline with a positioning precision of better than 0.3 mm. The electron flux density at that position is on the order of 106^6 s1^{-1} mm2^{-2}. The detector board contains two silicon detector chips of p-i-n diode type which can measure the β-electron flux from the source with a precision of 0.1 % within 60 s with an energy resolution of FWHM = 2 keV. The unique challenge in developing the FBM arises from its designated operating environment inside the Cryogenic Pumping Section which is a potentially tritium contaminated ultra-high vacuum chamber at cryogenic temperatures in the presence of a 1 T strong magnetic field. Each of these parameters do strongly limit the choice of possible materials which e.g. caused difficulties in detector noise reduction, heat dissipation and lubrication. In order to completely remove the FBM from the beam tube a 2 m long traveling distance into the beamline is needed demanding a robust as well as highly precise moving mechanism

    Design of a mobile neutron spectrometer for the Laboratori Nazionali del Gran Sasso (LNGS)

    Get PDF
    Environmental neutrons are a source of background for rare event searches (e.g., dark matter direct detection and neutrinoless double beta decay experiments) taking place in deep underground laboratories. The overwhelming majority of these neutrons are produced in the cavern walls by means of intrinsic radioactivity of the rock and concrete. Their flux and spectrum depend on time and location. Precise knowledge of this background is necessary to devise sufficient shielding and veto mechanisms, improving the sensitivity of the neutron-susceptible underground experiments. In this report, we present the design and the expected performance of a mobile neutron detector for the LNGS underground laboratory. The detector is based on capture-gated spectroscopy technique and comprises essentially a stack of plastic scintillator bars wrapped with gadolinium foils. The extensive simulation studies demonstrate that the detector will be capable of measuring ambient neutrons at low flux levels (~10610^{-6} n/cm2^2/s) at LNGS, where the ambient gamma flux is by about 5 orders of magnitude larger

    The KATRIN Pre-Spectrometer at reduced Filter Energy

    Get PDF
    The KArlsruhe TRItium Neutrino experiment, KATRIN, will determine the mass of the electron neutrino with a sensitivity of 0.2 eV (90% C.L.) via a measurement of the beta-spectrum of gaseous tritium near its endpoint of E_0 =18.57 keV. An ultra-low background of about b = 10 mHz is among the requirements to reach this sensitivity. In the KATRIN main beam-line two spectrometers of MAC-E filter type are used in a tandem configuration. This setup, however, produces a Penning trap which could lead to increased background. We have performed test measurements showing that the filter energy of the pre-spectrometer can be reduced by several keV in order to diminish this trap. These measurements were analyzed with the help of a complex computer simulation, modeling multiple electron reflections both from the detector and the photoelectric electron source used in our test setup.Comment: 22 pages, 12 figure

    A novel ppm-precise absolute calibration method for precision high-voltage dividers

    Get PDF
    The most common method to measure direct current high voltage (HV) down to the ppm-level is to use resistive high-voltage dividers. Such devices scale the HV into a range where it can be compared with precision digital voltmeters to reference voltages sources, which can be traced back to Josephson voltage standards. So far the calibration of the scale factors of HV dividers for voltages above 1 kV could only be done at metrology institutes and sometimes involves round-robin tests among several institutions to get reliable results. Here we present a novel absolute calibration method based on the measurement of a differential scale factor, which can be performed with commercial equipment and outside metrology institutes. We demonstrate that reproducible measurements up to 35 kV can be performed with relative uncertainties below 1 · 106^{-6}. This method is not restricted to metrology institutes and offers the possibility to determine the linearity of high-voltage dividers for a wide range of applications
    corecore